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Abstract

The receptivity theory of Goldstein and Ruban is extended within the nonasymptotic (quasi-

parallel) framework of Zavol'skii et al to predict the roughness-induced generation of stationary and
nonstationary instability waves in three-dimensional, incompressible boundary layers. The influence
of acoustic-wave orientation, as well as that of different types of roughness geometries, including iso-

lated roughness elements, periodic arrays and two-dimensional lattices of compact roughness shapes,
as well as random, but spatially homogeneous roughness distributions, is examined. The parametric

study for the Falkner-Skan-Cooke family of boundary layers supports our earlier conjecture that the

initial amplitudes of roughness-induced stationary vortices are likely to be significantly larger than

the amplitudes of similarly induced nonstationary vortices in the presence of acoustic disturbances

in the free stream. Maximum unsteady receptivity occurs when the acoustic velocity fluctuation is

aligned with the wavenumber vector of the unsteady vortex mode. On the other hand, roughness

arrays that are oriented somewhere close to the group velocity direction are likely to produce higher

instability amplitudes. Limitations of the nonasymptotic theory are discussed, and future work is

suggested.



1 Background

Although most boundary-layer flows of engineering importance are three-dimensional in nature, much

of the research related to their transition from the laminar to a turbulent state has focused on two-

dimensional boundary layers, particularly in view of the complexity of the physical phenomena involved

in the transition process. However, continued interest in the utilization of laminar flow technolgy in

real-world applications has Ied to a concerted effort in the recent years, by both theoreticians and

experimentalists, in the area of the stability and transition of three-dimensional boundary layers. A

competent review of the research published until 1989 was given by Saric and Reed [1], who also

provided an extensive bibliography on the subject. Notable progress since then includes the secondary

instability analysis for a rotating disk boundary layer by Balachandar et al [2], experiments by Saric and

his colleagues on the primary [3] and secondary [4] instabilities, plus the receptivity [5] of a swept-wing

boundary layer, the temporal simulation of the transition in a swept-wing boundary layer by Meyer

and Kleiser [6], and the initiation of spatial simulations by Reed [7], and Joslin and Streett [8].

The transition in a three-dimensional boundary layer can involve any one or more of the following

four types of disturbances: (i) attachment-line instability and/or contamination, (ii) crossflow vortices,

which can be either stationary or nonstationary, (iii) streamwise instabilities, including both the viscous-

and inviscid-type modes, and (iv) the centrifugal, or G6rtler, instability. From these, disturbances along

the attachment line are of paramount importance in laminar flow technology, because they can lead to

a turbulent boundary layer over the entire surface of the wing. However, if and when the attachment-

line flow can be maintained subcritical, and its contamination avoided by using techniques such as the

Gaster bump [9], the boundary-layer transition on the (typically convex) upper surface of a laminar-

flow airfoil is initiated by the crossflow vortices that dominate the favorable pressure gradient region

dose to the leading edge of this airfoil. Hence, in order to understand and successfully predict the

transition process in such flows, the different mechanisms by which these crossflow vortices are excited

within the boundary layer must be understood. Transition along the (partly concave)'lower surface of.

the airfoil can also involve the centrifugal instabilities; the generation of these instabilities, by virtue

of disturbances on the airfoil surface as well as in the free stream, has been described by Hall [10]

and Denier, Hall, and Seddougui [11], respectively. The effects of crossflow on the stability and the

generation of these modes has been studied by Bassom and Hall [12].

The first definitive work on the crossflow-receptivity problem was carried out by Wilkinson and
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Malik [13], who traced the origin of stationary crossflow vortices in a rotating disk boundary layer

to naturally occuring, isolated roughness sites on the disk surface. Subsequently, this finding was

verified through controlled experiments that involved artificially introduced roughness sites. The overall

conclusion of their work was that the eventual, periodic vortex pattern observed on the disk is the result

of the merging of the fan-shaped disturbance patterns that originate from each isolated site. This was

also the case in the theoretical calculations of Mack [14], which helped in further understanding this

phenomenon. In continuation of the work by Wilkinson and Malik [13], Waltz and Wilkinson [15]

examined the influence of unsteady external disturbances on the transition process in the rotating-disk

boundary layer. These researchers found "no observable flow response to linear, localized or global

acoustic forcing, either with or without roughness." A similar observation has also been made recently

by Radeztsky et al [5] on the basis of their experiments on a swept-wing boundary layer. These

findings suggest that the roughness-induced generation of unsteady crossflow vortices is significantly

weaker than the generation of stationary vortices through the same mechanism.

The theoretical foundations for the understanding of the receptivity process, in general, were laid

through the works of Goldstein [16], [17], Rnban [18], and Zavol'skii, Reutov, and Ryboushkina [19].

The basic theme in their work was an explanation of the prospective physical mechanisms, which en-

able the long-wavelength free-stream disturbances to excite the (typically) short-wavelength instability

modes. The main catalyst in this wavelength-reduction process was identified to be the occurrence in

the mean flow of components with commensurately shorter length scales. Specifically, Goldstein [16]

showed how a rapidly developing mean boundary layer near the leading edge of a flat plate becomes re-

ceptive to free-stream sound, leading thereby to the formation of two-dimensional Tollmien-Schlichting

waves in the region downstream. However, he also indicated how the overall effectiveness of this

particular mechanism could be strongly reduced by the decay of the generated eigenmode, from the

leading-edge region, up to the lower branch of the neutral stability curve. On the other hand, rough-

ness elements of a suitable length scale can lead to receptivity directly in the vicinity of the lower

branch, and thereby constitute a potentially stronger source of receptivity. The acoustic generation of

ToUmien-Schlichting modes in a two-dimensional boundary layer caused by the presence of localized,

but small-amplitude, variations in the surface geometry, was explained by Goldstein [17] and Ruban

[18] using large Reynolds number asymptotic methods. On the other hand, Zavol'skii et al [19] used a

nonasymptotic framework, based on the Orr-Sommerfeld (OS) equation, to study the receptivity due



to distributed waviness on a flat-plate airfoil. Reviews of the work by Goldstein and Ruban, as well

as the substantial subsequent work based on the asymptotic (triple-deck) theory have been given by

Goldstein and Hnltgren [20], Kerschen [21], and Kozlov and Ryzhov [22].

Choudhari and Streett [23] showed that, by recasting the ideas of Goldstein [1?] and Ruban [18] in

terms of the more familiar quasi-parallel disturbance equations, one could predict the receptivity caused

by small-amplitude surface nonuniformities in a large variety of flows such as high-speed and three-

dimensional boundary layers. A general approach for this purpose was described in Ref. [23], and results

were presented for both roughness- and suction-induced receptivity in two- and three-dimensional

boundary layers. One of the applications considered was the generation of crossflo_ vortices; these

investigators argued in the favor of a preferential excitement of stationary vortices relative to the

nonstationary ones via the imperfections on the surface of the airfoil. Admittedly, their argument is

only valid for shallow roughness elements, which produce only a weak perturbation to the incoming

boundary layer. Nevertheless, it provides a clue to understanding the observations of Waitz and

Wilkinson [15] and Radeztsky et al [5], and hence, will be summarized in the following paragraph.

The problem of roughness-induced stationary disturbances in a three-dimensional boundary layer was

also considered by ManuUovich [24], in the context of boundary-layer flow close to the attachment

line. He found that the initial amplitude of the stationary eigenmode is many orders of magnitude

smaller than the amplitude of the near-field motion directly above the localized roughness. Hence,

he speculated that the transition in a swept wing boundary layer is more likely to occur because of

a bypass mechanism, rather than because of the linear and nonlinear growth of crossflow instability.

While this may indeed be true for roughness elements of sufficiently large height, experimental evidence

suggests that the boundary layer over a typical mildly-rough surface becomes turbulent through the

usual sequence of primary and secondary instabilities.

As shown in Refs. [23] and [24], the stationary vortices are generated by a direct scattering of

the mean boundary-layer motion by the surface imperfections. Therefore, their initial amplitudes

scale on the height of the roughness element relative to the boundary-layer thickness. On the other

hand, the generation of nonstationary vortices requires an interaction between the surface roughness

and the unsteady free-stream disturbances, much in the same manner as the generation of Tollmien-

Schlichting instabilities in two-dimensional boundary layers; the latter is the topic of the (by now almost

classical) theoretical works of Goldstein [17], Ruban [18], and Zavol'skii et al [19], as mentioned already.
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Accordingly, the initial amplitudes of the unsteady vortices scale on the product of the height of the

roughness element and the amplitude of the unsteady free-stream disturbance. The magnitude of the

free-stream fluctuations is usually quite small in a flight environment (of the order of 0.1 percent or less),

which suggests that the initial amplitudes of the unsteady crossflow vortices excited via the surface

roughness are likely to be significantly smaller than the amplitudes of similarly excited stationary

vortices. This conjecture also appears to be supported by the earlier observations of Miiller and Bippes

[25] and Saric [26], who found the stationary vortices to be dominant in low turbulence wind tunnels.

However, a scaling argument alone is not sufficient to quantify the difference between the actual

amplitudes of the two types of vortices in a given physical situation. To determine these amplitudes,

one must also calculate the numerical coefficient that multiplies the respective scaling factor in each

case. In general, these numerical coefficients will scale differently on the flow Reynolds number for the

stationary and the nonstationary vortices. The above argument implicitly assumes that in the range

of Reynolds numbers typically encountered in practice, this difference in Reynolds number dependence

is not strong enough to fully compensate for the weakness of the unsteady forcing. Having noted this,

Choudhari and Streett [23] suggested that a detailed investigation be carried out to determine (i) if and

when the numerical coefficient in the unsteady case becomes relatively large, and (ii) to what extent it

can offset the smallness of the unsteady vortex amplitude.

This paper attempts to fill the above deficiency by computing the initial amplitudes of both types

of vortices in a few controlled situations. Within the limitations of the theoretical approach adopted

herein, the author hopes that the results obtained will shed some light on the role of receptivity in

determining what type of vortices will possibly dominate the primary instability stage during the

transition process over a swept wing. The major limitations of this work include the consideration

of only acoustic type free-stream disturbances, and the restriction to roughness distributions that

correspond to sufficiently small perturbations in surface height. Another crucial assumption implicit

in this work is that the crossflow modes under consideration are adequately described by the quasi-

parallel stability theory. While this assumption is likely to be true in a majority of cases relevant

to laminar flow technology, situations can occur where crossflow modes are known to be nonparallel

in certain regions of parameter space. In particular, Balakumar, Hall, and Malik [27] have shown

that the unsteady eigenmodes of a rotating disk boundary layer can be nonparallel in certain frequency

regimes. In addition to presenting a rather elegant theory to elucidate the structure of these nonparallel



modes, they have also described how these nonparallel modes can be excited by the roughness on the

disk surface through an interaction with unsteady external disturbances. Finally, one must note that,

in general, crossflow vortices could also be excited via other receptivity mechanisms, a number of

which have been identified previously in the context of a flat-plate boundary layer. These include the

receptivity due to other types of surface nonuniformities, such as variations in surface suction, and/or

surface admittance (Kerschen and Choudhari [28]), as well as other types of external disturbances(

such as the vorticity perturbations which are convected along with the free stream (Kerschen [29]). In

addition, there nfight also be a mechanism for the generation of crossflow vortices, which is analogous

to the leading-edge problem considered in the seminal work of Goldstein [16]. Such mechanisms are

especially worthy of consideration in the present context, because the crossflow vortices become unstable

relatively close to the leading edge; hence, the initial decay of the vortex modes excited near the leading

edge is probably quite small.

Briefly, then, the plan of this paper is as follows. In Section 2, we describe the theoretical approach,

used herein to compute the receptivity induced by a small-amplitude roughness distribution on an

otherwise smooth, infinite-span swept airfoil. The basic building block for this theory is the receptivity

due to a roughness distribution that is localized in one direction, but periodic along the other. In

view of the infinite span of the airfoil, it appears reasonable to first assume that the periodic direction

is along the airfoil span, although other types of geometries will also be considered subsequently.

The receptivity caused by such "localized periodic" types of roughness distributions can be readily

analyzed by extending the theory of Goldstein [17] and Ruban [18] to three-dimensional boundary

layers, as discussed previously by Choudhari and Streett [23]. Thus, we will follow the nonasymptotic

framework, which was originally used by Zavol'skii et al [19] for studying the distributed generation of

Tollraien-Schlichting waves in a two-dimensional boundary layer over a slightly wavy surface. Similar

implementations in the context of localized inhomogeneities in two-dimensional boundary layers have

recently been carried out by Choudhari and Streett [30], Crouch [31], and also Fedorov, Tumin, and

Zhigulev in the former U.S.S.R.; the reader may consult these latter references for additional details

of the nonasymptotic adaptation. For this reason, we present a minimum of det_il.q in regard to the

analysis and emphasize only the major features of the theory, plus issues that are specific to the three

dimensionality of the flow. As a simplified model of the swept-wing boundary layer, we consider the

two-parameter family of Falkner-Skan-Cooke (FSC) (Cooke [32]) boundary layers, which has previously

6



been used in a number of theoretical and computational studies related to the linear and nonlinear

dynamics of crossfiow-vortex instabilities (see the works of Meyer and Kleiser [6], Mack [33], Bieler

and Dallman [34], and Fischer and Dallman [35]). The results obtained from a numerically based

parametric study, for a few specific profiles from the FSC family of boundary layers, are described in

Section 3. Conclusions based on these results are given in Section 4.

2 Summary of the Nonasymptotic Approach for Three-Dimensional

Boundary Layers

2.1 Problem Definition

As mentioned in the introduction, we shall study the receptivity of a boundary layer over a swept

wing of infinite span in the context of the yawed wedge (i.e., the FSC family of flows [32]). The use

of FSC profiles in modeling the stability of nonsimilar boundary layers over swept wings has been

discussed in Refs. [6] and [34]. As discussed in Ref. [33], this particular choice allows for a systematic

variation in both the local chordwise pressure gradient parameter (the Hartree parameter)/JH and the

ratio of the inviscid slip velocities in the spanwise z* and chordwise x* directions. The latter is specified

in terms of the local sweep angle 0_w at the location of the roughness distribution. Note that the wedge

angle along the chordwise direction is related to the Hartree parameter /3H, and equals (_r/2)/Jg in

radians. A schematic of the problem geometry is given in Fig. 1.

After the introduction of a reference length scale l', which is later identified with the chordwise

position of the localized roughness distribution, and a velocity scale _*, which corresponds to the

magnitude of the inviscid slip velocity at x* = f*, the distributions of the (nondimensional) inviscid

slip velocities along the chordwise and spanwise directions can be written in the form

U (x) = cos xoX/(2-0n)

and

W_(x) = Constant = sin 8,w (2.1b)

respectively, where x denotes the nondimensional chordwise coordinate scaled with respect to l*.

Throughout this paper, symbols with an asterisk denote dimensional quantities, and those without

an asterisk denote the nondimensional ones. The subscript e is used to denote the local free-stream

conditions at a given chordwise location.



Because of the infinite span of the wedge, the boundary-layer flow along the chordwise and surface-

normal directions is decoupled from the flow along the spanwise direction and is given in terms of the

Falkner-Slma solutions as

Uo - Ue(x) f'(_) (2.2a)

and

Vo -- -R -1 (2 - _H) -1/_ [f(_}) - (1 --/_H)_f'(T})] z-_

respectively. Here, the simil_a'ity variable _ is defined as

(2.2b)

T/- y'[U:/(2 - Dii)v'z']I12 (2.2c)

where y"isthecoordinatenormal tothewedge surface;U:, theinviscidsllpvelocityalongthe chordwise

direction;and u*,the kinematicviscosityofthe fluid.The Reynolds number R isdefinedas

R = (V'l'/u') 1/2 (R >> 1) (2.2d)

and is related to the Reynolds number Rc (based on the chordwise slip velocity at z -- 1) v/a

= RJco6 Oo,.

The functionI(T})in Eqs. (2.2a)and (2.2b)satisfiesthe boundary valueproblem

f'# Jr If# "l"/_H(I--in) = 0, (f(0)-"f'(0)--0, f'(oO)-'-I).

(2.2e)

(2.2)')

The boundaxy-layer flow along the spanwise direction is given by

where g(7}) satisfies

W0 - sin 0,w g(T}), (2.3a)

g" -F fg'-O, (g(0)= 0, g(oo) ---I). (2.3b)

As discussed in the introduction, we first consider the receptivity induced by a distribution of

roughness elements that is localized in the chordwise direction at a distance l* from the leading edge.

The maximum of the surface-height perturbation associated with this roughness distribution is assumed

to be sufficiently small, so that the mean flow in its vicinity can be treated as a small perturbation

to the incoming boundary-layer flow given by Eqs. (2.2) and (2.3) above. To facilitate the generation

of the vortex instabilities in question, both the chordwise and spanwise length scales of the roughness
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distribution are assumed to be much shorter than g*, specifically, in the same range as the corresponding

wavelengths of the crossflow modes at x* = g*. The small-height approximation implies that the

different Fourier components of the disturbance motion along the spanwise direction are decoupled

from each other to the required level of accuracy. Hence, without any loss of generality, one may

assume that the wall-height distribution (relative to the underlying flat surface) is periodic along the

spanwise direction and is given by

h*(x*, z')/L* = ewh_,(X)eiS_"z; _w << 1. .(2.4a)

In Eq. (2.4a), we have introduced an additional length scale

L* = g*/Rc (2.4b)

which is proportional to the thickness of the unperturbed chordwise boundary layer at the location of

the roughness distribution. This shorter length scale is used to scale both the surface height itself and

its variation along the streamwise and spanwise directions. Thus, the latter is specified in terms of the

local streamwise coordinate X = (x*-_.*)/L* (instead of the global variable x in Eqs. (2.2) and (2.3)),

and the "fast" spanwise coordinate Z = z*/L*. The small parameter ew in Eq. (2.4a) characterizes the

magnitude of the wall-height perturbation, and _ --- fl_,L* represents the nondimensional wavenumber

that corresponds to the spanwise-periodic distribution. The function hw(X) specifies the streamwise

shape of the roughness distribution in terms of the local coordinate X.

The unsteady perturbation upstream of the wedge is assumed to be a small-amplitude acoustic

disturbance with a frequency of w* and a perturbation-velocity vector that lies in the same plane as

the incoming steady flow and the leading edge of the wedge. As we shall subsequently observe, this

latter assumption is not necessary for this analysis; however, it does simplify the ensuing presentation.

Because the acoustic wavelength is infinite in the low Mach number limit, the outer unsteady motion

is quasi-steady in nature; therefore, the associated unsteady slip-velocity distribution Can be expressed

in the form

u'ac,e(x')lV:e= cos0oc e

and

= Constant = sin 0_ e -i'°t (2.5b)

where 12_ denotes the magnitude of the unsteady slip velocity at the roughness location (x = 1), such



that _ac - P_c/P* < < 1. The nondimensional frequency w and time t have been scaled by P*/L* and

its inverse respectively.

This completes the definition of the problem under consideration. The objective of the receptivity

analysis now is to solve for the disturbance motion in the vicinity of the roughness distribution, so

that it becomes possible to estimate the initial amplitudes of both the steady crossflow vortex (gen-

erated directly by the surface nonuniformity) and the unsteady mode of instability (generated via the

interaction of the nonuniformity with the unsteady disturbance in the free stream). One may reiter-

ate that the physical mechanisms behind both these receptivity problems are the same, in a general

sense at least, as those pointed out by Goldstein [17], Ruban [18], and Zavol'skii et al [19], in that

the roughness distribution provides the appropriate length scales necessary for the generation of each

instability mode in question. Hence, the stationary vortex mode is excited by a direct "scattering" of

the mean boundary-layer flow at the roughness location, while the unsteady vortex is generated by a

similar scattering of the unsteady motion associated with the free-stream disturbance.

2.2 Perturbation Scheme, and Extraction of the Steady and Unsteady Eigenmodes

for a SpanwiseoPeriodic Roughness Distribution

2.2.1 Perturbation Scheme

As shown by Goldstein [17], Ruban [18], and Zavol'skii et al [19], the analysis of roughness-

induced receptivity simpllfies'considerably after the small-disturbance approximation is invoked (_ < <

1, _ac <:< 1) and the disparity is exploited between the length scale L* of the roughness distribution

and the streamwise length scale l* of the unperturbed mean boundary layer. Specifically, if P* and

p.p.2 are used to nondimensionalize the total velocities and pressure, respectively, in the vicinity of the

roughness distribution, then we can expand the resulting array of dependent variables Q - (U, V, W, P)

in the form

Q(X, Y, Z, t) = Qo(Y) + _.qw(x, r)e i_'z + _.cq.c(Y)e -i'°t

• 2 2
+ E_,(,_.Q,.,._(X,Y)e '(_'z-'*) + O(%,_..,R -a) (2.6)

where Y denotes the wedge-normal coordinatescaledwith respectto L*. The sUlfLxeSw and ac

indicatethe first-orderperturbationscaused by the wallroughness and the free-streamacousticwave,

respectively;the combined suffixw, ac representsthe mutual interactionbetween the two first-order

perturbations.In writingthisexpansion,we have alreadyutilizedthe localnature of the regionof
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receptivity along the chordwise direction (L*/£* << 1) by replacing the unperturbed boundary-layer

flow (Uo(x, Y), Vo(x, Y), Wo(x, Y), Po(x)) by its local quasi-parallel approximation Qo(Y) = (Uo(x =

1, Y),O, Wo(x = 1, Y), Po(x = 1)), which is accurate to within an error of O(R-1). Also implicit in

the stated form of perturbations at O(e_) and O(cweac) is the assumption that the unperturbed profile

Qo(Y) is not absolutely unstable. The calculation of these perturbations, and the extraction of the

generated instability modes from them is described in the following two subsections.

2.2.2 Extraction of the stationary crossflow mode

The mean-flow disturbance caused by the wall nonuniformity, Qw, satisfies the steady Navier-Stokes

equations, which are linearized about the parallel mean flow, Q0(Y). The boundary conditions that

accompany this homogeneous set of equations include the usual constraints of zero normal velocity

and no slip at the roughness boundary Y = e_,hw(X)e if_'_z and the zero-disturbance condition as

Y _ oo. Specification of the appropriate boundary conditions along the chordwise (X) direction

requires causality considerations, as discussed further below. These considerations ensure that the

computed solution for the mean-flow perturbation is physically realizable as the large-time limit of the

solution to a corresponding time-dependent problem.

Within the linear quasi-paraLlel approximation, the perturbation Vw in the vertical velocity is

decoupled from the perturbation _r_ - OU_,/OZ- OW,,,/OX in the vertical vorticity. This decoupling

enables one to obtain a single equation for V_, which is fourth order in Y and, furthermore, reduces

to the time-independent form of the Orr-Sommerfeld (OS) equation in the Fourier transform (X ---*a)

space. Thus, we have

£_A_,_,o,n) _,,, = 0

=,(o 0+ (2.7a)

wherein we have used an overbar to denote the Fourier transformed perturbation

Oo

y) = 1 / e-i_Xv,_(X,Y) dX (2.7b)
--00

the operator D, as well as the primes, denotes differentiation with respect to the Y coordinate. Lin-

earization (and a transfer to Y = 0) of the surface boundary conditions leads to the inhomogeneous

set of conditions

12_,= 0, 17_ = i(o_U_(O) + fl=Wg(0)) hr,(a) at Y = 0. (2.7c)
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Finally, of course, we have the zero-disturbance conditions far away from the wall, viz.,

V'_, ¢; -. 0 as r -_ _. (2.7d)

After the vertical velocity perturbation has been determined by solving Eqs. (2.7a),(2.7c), and

(2.7d), the combination (aUw + _t_fw) of the horizontal velocity components follows trivially from the

continuity equation

i(_U. + _._P.) + V_' = 0. (2.7e)

The individual velocity transforms Uw and t_v'_can also be determined by further solving the vertical

vorticity equation (i.e., the Squire equation [36]) in the Fourier transform space, namely,

£(_,_,0,a)

°'/_'w'n) i(aUo+ ,Wo-_)- R[D_-.(a' + fl2)] ) (2.8a)_ Squir¢ -_

with the inhomogeneous boundary condition

fl,_0,, - alYd,_ = -(_U_(0) - aW_(0)) at Y = 0 (2.8b)

plus the homogeneous condition

fl_0_ - alTV_ _ 0 as Y _ oo. (2.8c)

Finally, the pressure perturbation P_ can be calculated from either the linearized X-momentum equa-

tion or by solving the linearized form of the usual Poisson equation that governs the pressure distribution

in an incompressible flow. However, if one is not interested in the total mean-flow perturbation pro-

duced by the surface roughness, but only in the crossflow instability modes generated as a part thereof,

then it is sufficient to just solve for the perturbation in any single flow variable, and this, in our case,

will be Vw. Having identified the amplitude of the vertical velocity perturbation corresponding to the

crossflow mode of interest from the solution for V,o, it is easy to determine the corresponding pertur-

bations in other flow variables by using the eigenfunction properties for this crossflow mode. (Refer to

the discussion related to Eq. (2.10) below.)

One may observe that the Fourier transform solution Vw(a, Y) can be computed from (2.7a), (2.7c),

and (2.7d) without having to account for causality in the problem. However, the latter considerations

arise during the inversion of the Fourier transform,

Vw(X,Y)- 1 f d x  (y)da' (2.9)
r
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via the specification of the inversion contour F in the complex a plane. Basically, the value of the

integral in (2.9) is determined by contributions from the poles and branch cuts of the integrand, V_,

which include the singularities of the forcing function h_(a) in 2.7a,c, plus the discrete and continuum

eigenmodes of the homogeneous, steady OS boundary value problem. In particular, one of the discrete

OS modes, denoted here by ains(_w,w = 0; R), represents the potentially unstable stationary crossflow

mode, which was identified in the stability calculations of Mack [33], and Dallman and Bieler [34].

However, whether the contribution due to this mode is relevant to the upstream or the downstream

side of the roughness distribution will be determined by whether or not the causal position of F lies above

the first-order pole singularity at a = ai,_s(/3_o, 0; R). This usually requires a rigorous scrutiny along

the lines of the Briggs-Bers criterion [37] [38], which, as originally derived, is only applicable to two-

dimensional disturbances in a two-dimensional flow. Extension of this criterion to a three-dimensional

boundary layer has not been attempted yet, even though the problem simplifies considerably in our

present case, on account of the restriction to a spanwise periodic roughness distribution. Hence, in

our calculations, we will simply assume that the crossflow instability is convective in nature, which

guarantees that the generated crossflow vortex always appears on the downstream side of its source.

Cases where this may not be true are always possible, but, certainly, there is a considerable experimental

evidence thus far which tends to support the validity of this assumption - see Huerre and Monkowitz,

[39].

The residue contribution to the integral in (2.9), from the pole singularity of the integrand at

a = ai,_(/3w,w = 0; R), can be ascertained through a numerical evaluation of the Fourier transform

solution, V_(a, Y), in the vicinity of this wavenumber location (see the early work by Gaster [40], and

Tam [41] in this context). The corresponding part of the mean-flow perturbation in an arbitrary flow

variable q can be expressed in the same form as Goldstein [17], namely,

q_ = [t_(ains(t3_,O,R)) A_(/3_,, R) Eq(Y;fl_o,O,R) e_[°''''(_'_'°'n)x+/3'_z)] ", (2.10a)

where the subscript s denotes a stationary vortex, and hw(ai,_s(_,_, O, R)) is the amplitude of the Fourier

component of the (scaled) roughness geometry which is locally resonant with the stationary vortex

mode. The factor As(/3_o,R) is, effectively, a Green's function for the roughness-induced stationary

receptivity problem. It is an intrinsic property of the local boundary-layer profile, characterizing the

efficiency of the local receptivity process, much in the same manner as the eigenvalue ai,_s(flw, O, R)

characterizes the stability of this profile. Hence, one may use this "efficiency" function to gauge the
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"receptivity properties"of the boundary layer at different spanwise wavenumbers, and/or chordwise

locations, irrespective of the geometry of the roughness distribution. The function Eq(Y,_w, O, R)

denotes the stationary-vortex eigenfunction, which we assume to have been normalized in such a way

that the maximum magnitude of Ecos Co,.v+,in s,,. w, i.e., the eigenfunction associated with the velocity

perturbation along the local inviscid streamline, is equal to unity. This normalization implies that the

effective initial amplitude of the stationary vortex, based on this latter quantity, is given by

(cos O.w u; + sin 0._, w*)/V* = _whw(ain.(/3_,, 0, R)) h.(/3,,,, R). (ZlOb)

2.2.3 Extraction of the unsteady - crossflow and Squire - eigenmodes

We now consider the generation of an unsteady crossflow vortex via the local scattering of Qac, i.e.,

the basic unsteady motion, corresponding to the signature of the acoustic disturbance within the

unperturbed, mean boundary layer. If we ignore the relatively narrow band of small-frequency crossflow

vortices with w = O(R -1) or less, then to the leading order of approximation in the Reynolds number

R, the acoustic-signature field Qac(Y) is given by the quasi-parallel, Stokes shear-wave solution,

Uae = cos O_c (1 - exp[is_,(iwR)a/_Y]) x au/(_-ou) e -i't (2.11a)

(2.11b)

(2.11c)

(2.11d)

QC "" 0 ,

Wac = sin One (1 - exp[is_(iwR)l/2Y]) e -iwt ,

P,_c = iw(eos One X + sin Oac Z) e -iwt ,

where s,_ = +1, depending on whether the frequency parameter w is positive or negative.

We had previously alluded to the fact that the localized receptivity of a low-speed boundary layer to

an acoustic wave of sufficiently high frequency is independent of the upstream form of the free-strea_m

disturbance. The rationale behind this observation may be gleamed from the form of the Stokes-wave

solution above, which is completely determined by the local unsteady slip velocity, being independent

of both the previous history of the free-stream disturbance and the local boundary-layer motion. For

frequencies that correspond to w = O(R -x) or less, the Stokes-wave approximation becomes invalid.

However, the other aspects of this receptivity analysis remain exactly the same. Hence, if one needs

to compute the receptivity characteristics in this range of frequencies, it is sufficient to replace the
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solutionin (2.11a-d)with thecorrectsolutionfor the localacousticsignature,andthen followthrough

the remainingparts of the receptivity analysissimilar to that describedunderneathfor the large-

frequencycase.As onecaninfer from the workof Lamand Rott [42],the correctasymptoticform

of the acousticsignaturefield at lower frequenciescanbe obtainedby solvingthe linearized,three-

dimensional,unsteadyboundary-layerequations.It isobviousthat dueto theparabolicnatureof these

equations,thereceptivitycalculationin thisrangeof frequenciesdependsuponboth theupstreamform

of the free-streamdisturbanceaswellasthemeanboundary-layermotion.

Thegenerationof anunsteadyvortexinstability maynowbeviewedasthe "tuning" of the locally

uniformacoustic-signaturefieldto thewavenumbervector,oi,_s(3_,,_;R), of the unsteady vortex mode,

via the corresponding Fourier component, h_o(ai,_s(/3w, w; R)), of the surface roughness distribution. As

pointed out by Zavol'skii et al [19] and Goldstein [17], this roughness-induced tuning involves both

(i) a direct scattering of the Stokes wave at the rough surface, and (ii) an indirect scattering via the

mean-flow perturbation Q_o. This mean-flow perturbation includes the stationary crossflow mode, as

discussed above; but, the presence of this mode does not influence the excitation of the unsteady mode,

since the two wavenumbers, ains(_w,W = 0; R) and oi,,s(13_o,_a; R), are not equal, in general. Thus, any

unsteady receptivity through the indirect scattering mechanism is entirely due to the remaining part

of the mean-flow perturbation, which remains localized in the vicinity of the roughness distribution.

Of course, if and when the steady and unsteady vortices have the same streamwise wavenumber, we

have a triad resonance between the two crossflow vortices and the acoustic-signature field, and this

can lead to a sustained generation of the unsteady mode even in the smooth region downstream of the

roughness distribution. This is an exceptional case, however, and will not be considered here.

Along the lines of the mean-flow perturbation Qto, it can be shown that the Fourier transform of

the vertical velocity perturbation associated with the unsteady scattered field Q,o,_c is governed by the

inhomogeneous OS problem,

£_,n,,,,<,,,Rf-z -i(cos O:c a + 8in 0=_ fl_) {(1 - exp[is_(iwR)ll2y]) [D 2 - (0 2 +OS _ w,ac =

-iwR exp[is,o(iwR)l/2y]) 12,o

_rw,_C= O, (Z_,_C= s_,(iwR) 1/2 (cos Oa¢ 0 + sin One3w) at Y = O.

_rll.l i G C , --IV_,_c -+ 0 as Y ---+oo.

(zl2a)

(2. 2b)

(2.12c)
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Similarly, the Fourier transform of the unsteady verticai-vor_icity field satisfies the inhomogeneous

Squire equation,

{(13 u Squire _,/.'w v w,ac ----- -- --

+i(cos Oac a + sin O_e 13w) (1 - ezp[is,,(iwR)l/2Y]) (13w(Jw - alTVw)

-i(cos O,,c 13,,,- sin Oac a) s,o(iwR) 1/_ ezp[is_(.iwR)l/_y] 9_,} , (2.13a)

along with the inhomogeneous boundary condition,

(13wU_,a, - alYd_._c) = is_,(iwR) 1/2 (cos O_c13"0- sin O_c a) at Y = 0, (2.13b)

plus the homogeneous condition,

(13,,_(]w,ae- al'I:'0,ac) --* 0 as Y --+ c_. (2.13c)

Again, the perturbations associated with the generated unsteady vortex mode can be separated

out as the residue contribution corresponding to the pole at the relevant unsteady eigenvalue, a =

Otins(/_w, W, R). This yields

q, = [_w(ains(13w, w, R)) Au(13w, w, R, Oat) Eq(Y, 13w,w, R) e i[c_'"'(/3_:°'R)X+o'_z-_t] , (2.14a)

where the subscript u denotes an unsteady mode, and the interpretation of the geometry function

/_w, and the efficiency function Au, is quite similar to the interpretation of the respective functions

in the stationary case examined previously, except that in addition to its dependence on the meart

boundary-layer properties (analogous to As) and the frequency parameter w, the efficiency function Au

also depends upon the acoustic-wave orientation 0ac, in view of the dependence of the inhomogeneous

terms in the OS boundary value problem (2.12a-c) on 0_c. Thus, the nondimensional initial amplitude

of the nonstationary mode, based, again, on the maximum velocity perturbation along the external

inviscid streamline, is given by the product

(cos Osw u_ + sin 0,_, w_)/l:_* = ewhw(ain,(13,,, w, R)) Au(13w, w, R, O_c). (2.14b)

It is easy to see that the dependence of unsteady receptivity on the acoustic wave orientation is only

manifested through a single multiplicative factor (cos 0_ a+sin Oac13,o) in both the volumetric (2.12a),

as well as boundary (2.12b) inhomogeneities. In view of this, it is possible to express Au(13w, w, R, O_c)

in the form

hu(13_,,_, R, 0_) = ai,,o
cos Oac ain° + sin Oac 13,0A_ (13_, w, R, 0). (2.15)
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Equation(2.15)impliesthat the efficiencyfunctionis proportionalto the projectionof the local un-

steadyslipvelocityalongthedirectionofthewavenumbervectorcorrespondingto the instabilitywave.

The simplicityof this resultstemsfrom the isotropy(in the X - Z plane) of the shape function that

describes the variation in the Stokes-wave solution along the wall-normal direction. The fact that

the result (2.15) is identical to an earlier result by Choudhari and Kerschen [43] for the case of a

two-dimensional boundary layer should not have come as a surprise, since the Stokes-wave solution is

independent of the mean boundary-layer motion, as mentioned previously.

One may observe that it is also possible to compute the amplitude of the Squire mode at a spanwise

wavenumber of Bw, and frequency w, by solving the inhomogeneous Squire problem (2.13a-c). However,

these modes are always damped [36]. Moreover, their role in the transition process is also not firmly

established, although, for two-dimensional boundary layers, they might be playing the role of dormant

secondary instabilities of the subharmonic type - see, especially, the insightful work of Herbert [44]

in this context. Unfortunately, the role of these Squire modes in the transition of three-dimensional

boundary layers is even less clear, and, therefore, we have not attempted to compute their initial

amplitudes in this paper. The generation of Squire modes in a two-dimensional boundary layer, due

to a three-dimensional surface nonuniformity, has been examined, however, and will be reported in a

separate paper.

The reader may also note that a stability calculation for the spatial growth rate of a three-

dimensional instability mode requires information about the direction in which this normal mode

amplifies. A typical assumption made for infinite-span geometries is that the amplification occurs

purely along the chordwise direction [33]. This particular choice is supported by concepts borrowed

from the conservative wave theory, in particular, the irrotationality requirement for the wavenumber

vector corresponding to the instability mode. However, other choices are possible as well and, indeed,

have been suggested in the literature on stability (see Nayfeh [45]). This nonuniqueness basically arises

from a lack of knowledge concerning the source of this instability mode. In a receptivity calculation,

there is no such ambiguity. Thus, in the present case, the spanwise periodic nature of the roughness

distribution automatically implies that the generated vortex (stationary, as well as nonstationary) will

amplify along the chordwise direction.
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2.3 Application of the Theory to Other Roughness Geometries

2.3.1 Skewed Arrays of Compact Roughness Elements

One common occurence for the spanwise-periodic roughness distribution considered thus far

corresponds to a set of compact roughness elements placed at equal distance along the airfoil span.

Such an array contains energy in all harmonics of the fundamental; the analysis above represents the,

receptivity caused by one such harmonic. In practice, however, it is also possible to encounter roughness

arrays which are skewed with respect to the spanwise direction (Fig. 2). Because the flow Reynolds

number varies continuously along the length of a skewed array, the resulting instability motion is

somewhat more complex than in the spanwise periodic case. However, at least on a local basis, it

can be treated as a single crossflow vortex that decays or amplifies in a direction orthogonal to the

skewed array, rather than in the chordwise direction. Of course, for a fixed spacing between each pair

of adjacent roughness elements, the wavelength of the crossflow vortex generated by a skewed array is

different from that generated by a spanwise-periodic one.

A crossflow mode of the same wavelength and axial orientation can be excited as a fundamental

harmonic with the skewed roughness array only when this mode is locally neutral, and one tunes the

interelement spacing along the array to match the wavelength of the vortex mode in that direction.

To compute the initial amplitude of the vortex in this case, one could simply rotate the axes of the

coordinate system so that the new axis that corresponds to the periodic direction is aligned with

the roughness array and then proceed with the residue calculation along the other (i.e., nonperiodic)

direction, as before. However, no additional calculation is necessary for this purpose because the initial

amplitude of a given (neutral) vortex mode excited by a skewed roughness array is related to the

amplitude of the same mode in the spanwise periodic case by the relation

q(Or) cos Or_,. - sin O_a_,_a 1
- . (2.16)

q(0r = 0) /_,_ cos 0r - -_sin 0_'

where the angle 0r is the orientation of the skewed roughness array with respect to the spanwise

direction (Fig. 2).

As seen from Eq. (2.16), the ratio q(Or)/q(Or = 0) can be expressed as a product of two other ratios,

each of which can be given a simple physical interpretation. The first of these ratios corresponds to

the ratio of the number of roughness elements per unit length along both the skewed and the spanwise-

periodic arrays, respectively. This ratio arises from the fact that the vortex mode under consideration
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hasdifferentwavelengthsalongthetwoarrays;hence,the amplitudeof thefundamentalharmonic(i.e.,

the geometryfactor hw) has a different value in each case. The other factor on the right-hand side

of Eq. (2.16) relates the residues along two different nonperiodic directions for a fixed forcing in the

Fourier transform space (i.e., for the same geometry factor hw). Thus, this factor reflects the varying

sensitivity of the boundary-layer flow to roughness arrays with different orientations.

Because the first of the above two ratios is proportional to the projection of the wavenumber vector

(c_ins,/_) along the roughness array, it has its maximum magnitude when these two directions are

aligned with each other. On the other hand, this factor reaches its minimum value of zero when the

array is perpendicular to the wavenumber vector of the vortex, which essentially reflects the fact that

the wavelength of the vortex mode along this direction tends to infinity so that any array with a finite

periodicity along this direction cannot excite this mode as a fundamental harmonic. The second ratio in

Eq. (2.16) is inversely proportional to the projection of the group velocity vector (which corresponds

to the vortex mode of interest) on the normal to the roughness array. Therefore, its magnitude is

minimum when the roughness array is orthogonal to the group velocity vector, but maximum when

the roughness array is nearly aligned with the latter direction. Again, one should keep in mind that in

the case of a skewed roughness array, it is more accurate to treat the total amplitude of the generated

crossflow mode as the summation of the respective contributions from each isolated roughness element.

Therefore, the above results may be influenced by the additional desynchronization between such

individual contributions by virtue of the slow variation in the mean boundary-layer properties along

the array (see, for instance, Refs. [19] and [46] for the discussion of a related problem).

2.3.2 A Single, Isolated Roughness Element

Now, let us discuss the application of the theory to the problem of receptivity due to an isolated

three-dimensional roughness element. The analogous problem for a two-dimensional boundary layer

was examined by Choudhari and Kerschen [43]. As discussed by these authors, the instability motion

generated by a doubly-compact source of this type can be represented as the integral over a continuous

spectrum of Fourier modes along some arbitrarily chosen physical direction. Thus, while the initial

amplitude for each Fourier mode can be related to the efficiency functions As and A,, above, the

efficiency function at any single wavenumber need not have any direct bearing on the total instability

amplitude at any given location. Fortunately, an application of the steepest descent method [47] shows
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that, sufficientlyfartherdownstreamof the source, the instability motion along each ray that originates

from the source is dominated by a narrow band of wavenumbers, which is centered on the mode which

has its group-velocity vector directed along this ray. Therefore, the instability amplitude along this ray

can, again, be related to the efficiency function for this dominant mode. A steepest descent calculation

for a white-noise source in a rotating-disk boundary layer was given by Mack [14].

2.3.3 Roughness Patterns That are Nonlocalized in Both Directions

Now that we have discussed the application of the theory to roughness distributions that are compact

in either one or both directions, let us briefly examine the issue of receptivity attributed to roughness

distributions that are noncompact in both X and Z. Such distributions can correspond to, for example,

a two-dimensional lattice of discrete roughness elements, a known waviness in the surface geometry, or a

completely random distribution of roughness height that is known only in terms of its joint probability

distribution function. As discussed by Choudhari and Streett [30], the generation of instabilities in

distributed regions of this type can still be analyzed by a relatively simple extension of the localized

receptivity results. The idea here is to treat the receptivity as a weighted integral over the contributions

from each infinitesimal subregion along the direction of instability growth. Each local contribution is

related to the value of the efficiency function above, whereas the weighting function basically accounts

for the phase shift and the amplification, with respect to some fixed reference station. Thus, for instance,

the dimensional amplitude of the chordwise-velocity perturbation associated with an unsteady vortex

mode is determined by the integral

1 ei[O,.,(x,)+#.z,_ta,t, ]

,r*

d_*

h_,(_*)Rc._lx'* l;ac'e(x*) e-i°'"(_*) H(x* - $*)/_[1_, '

(2.17a)

where Ymaz denotes the maximum of IEu] along the wall-normal direction at a given station, and

/
characterizes the chordwise variation (with respect to some fixed reference location) in the complex

phase of the instability mode under consideration. Note that the presence of dimensional quantities

_, and w* in the list of arguments for Eu, A_,, and ains indicates that the physical frequency and
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spanwisewavenumber are kept fixed across the region of integration, rather than the nondimensional

values w and/_, which were based on local length and velocity scales. From now on, we will take this

for granted, and omit both/_ and w* from the above lists for brevity of notation.

Zavol'skii et al [19], Tumin and Fedorov [48], and Choudhari [46] have shown that the value of an

integral of this type is dominated by the contributions from a relatively narrow region in the vicinity of

the lower branch location. The concentration of receptivity near the lower branch region was also noted

by Crouch [49] in his work. As shown in Refs. [19], [46], and [48], the streamwise length scale of this

narrow region is intermediate to the wavelength of the instability wave at the lower branch location,

and the longer length scale over which the mean boundary layer evolves. This further simplifies the

analysis by allowing one to neglect the variations in the efficiency function A_, across this region and to

approximate the instability wavenumber ains by a linear Taylor-series approximation in the chordwise

coordinate about the lower branch location. Closed-form expressions can now be derived for certain

special types of geometries. In particular, if we assume that the roughness distribution corresponds to

a sinusoidal shape of the form

h*_(x*, z*)/h_ = e i["*(_*-x_.b.)+_*z*+¢°], (2.18a)

then the maximum of the chordwise-velocity perturbation at locations that are sufficiently farther

downstream of the lower branch station is given by

* _--_a [a_-ai"_(Rl'b')]2
u_, _ Rho 2 Z_,(ym_,_:,Rl.b.)A,,(Rt.b.,O_c(x_.b.)) e- ,D_
Y*¢ R_.b.

ei[ei,,(x*)-oin_(X_.b )-t-_* z*-w*t*+¢o] ,

(2.18b)

where Rho is the Reynolds number based on the waviness amplitude h_), and

_ 2 d ai,_s [ (2.18c)Da - Rct.b. dx x=l '

is the desynchronization factor, which is related to the chordwise rate of change in the dimensional

streamwise wavenumber of the instability mode under consideration. All reference scales used for

nondimensionalization purposes in Eqs. (2.18b) and (2.18c) (as well as Eqs. (2.18d) and (2.19) below)

are the same as those considered in the localized analysis above, with the assumption that the latter

distribution is centered on the chordwise station that corresponds to the lower branch (denoted by the

subscript l.b. in these equations).

The factor D_ determines the rate at which the surface waviness becomes desynchronized with

respect to the instability wave phase Oi_ as one moves away from the lower branch location. By
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virtueof its smallmagnitude,whichisrelatedto theratio of the instabilitywavelengthto the distance

from theleadingedgeto the lowerbranchlocation,this factor characterizesthe largeresponseof the

boundarylayerin the presenceof distributedroughness,andthe strongselectivityof this responsein

the chordwisewavenumber(aw) space.In particular,theratioof the effectivevortexamplitudedueto

a two-dimensionalorthogonallatticeof compactroughnessshapesto theinitial amplitudeof thesame

vortexwhenit is excitedby asinglespanwise-periodicarrayof the sameroughnessshapesat the lower'

branchlocationis givenby

q_Dtattice _ a,n,(Rl.b.) exp ( [_w -a,,_s(Rz.b.)]2_q[D ,_rraU _ _-- iD, ] • (2.1Sd)

Note that this expression is valid irrespective of the specific shape of the individual roughness element.

In fact, the same expression also holds in the corresponding two-dimensional situation, namely the ratio

of the effective instability amplitude caused by a series of equidistant roughness strips to the amplitude

associated with a single roughness strip.

Now, let us examine the case where the acoustic disturbance is still deterministic and time harmonic,

as before, but the roughness-height distribution h_,(x*, z*) is a random function of both its spatial

arguments. For simplicity, we will assume that the latter is also statistically homogeneous in both x*

and z*, but not necessarily isotropic. The instability motion generated in this case is, again, harmonic

in time, but a zero-mean random function of the spatial coordinates x* and z*. Then the power

spectrum .q_ of the amplitude of the chordwise velocity perturbation associated with the generated

instability motion is given by

-- -Ira(Do) IE (Ym, , R,.,.)

where Ira(,) denotes the imaginary part of a complex quantity, Sw is the spectral density function that

corresponds to the wall-roughness distribution, and N(x*) =_ -Im(Oin,(x*)- Oin,(zT.b.)) denotes.

the linear amplification (with respect to the lower branch location) of the unsteady vortex mode with

frequency w ° and spanwise wavenumber fl_,. For a given w* and fl_, this expression is valid for locations

that are sufficiently farther downstream of x* = X_.b..

The results (2.18a) and (2.19) above are identical to those obtained by the author in Ref. [46],

with the only difference being related to the definition of the desynchronization factor D,_, which
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in its presentform (seeEq. 2.18b)is applicableto an arbitrary nonsimilarboundarylayeroveran

infinite-spansweptwing. BecauseRef. [46]providesa detailedderivationof theseresults,and the

interpretationandthe implicationsof the same,wehaveonly quotedthefinal resultshere.Thereader

is alsourgedto referto the worksby Zavol'skiiet al [19] and Tumin and Fedorov [48] in this respect.

Provided that the quasi-parallel stability theory is valid in the vicinity of the predicted lower branch

location for the stationary mode, the equations (2.18a) through (2.18d), and (2.19) can also be applied

towards the stationary receptivity problem, following, of course, a replacement of the subscript u in u_,

and Au by s, and the velocity scale P*c by the free-stream speed V*.

Because the efficiency function A_, has a rather simple dependence on the orientation of the acoustic

wave, Eq. (2.19) can be further generalized to the case where, in addition to the roughness-height

distribution, the acoustic disturbances in the free stream are also random in nature. The instability

motion generated in this case is a random function of both the spatial and temporal coordinates. If

one assumes that the acoustic spectrum is statistically stationary and also isotropic (i.e., Oac has an

equal probability of assuming any value between [0, 27r]) then the power spectrum of the amplitude of

the chordwise-velocity perturbation associated with the generated instability motion is given by

V• , insk l.b.))l,x ) = -rm(2D,) IE (Ymo Rt.b.) = 0

S_ (ai,_(Rt.b.),_w) S*_(w*) exp[2N(x*)], (2.20)

where 0in8 = arctan (fl_,/ai,_,) corresponds to the orientation of the instability-wave vector and the

function S_(w*) denotes the frequency spectrum of the (dimensional) acoustic slip velocity in the

vicinity of the lower branch location for the unsteady vortex mode with frequency w* and spanwise

wavenumber flw.

This completes the theoretical discussion that pertains to the problem of receptivity in three-

dimensional boundary layers. Much of this discussion and the results can be applied quite readily to

other receptivity problems in the same category (e.g., acoustic generation of instability waves in the

presence of surface suction through arrays of suction holes with an appropriate spacing). In fact, the

discussion related to the effects of roughness geometry is also relevant to the control of boundary-layer

instabilities by active wave-cancellation techniques. Numerical results based on the application of this

theory are given in the following section.
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3 Numerical Results

As seen from the Eqs. (2.10b) and (2.14b), the scaled amplitude of a generated instability mode

can always be expressed as the product between an efficiency function (As or A_), which is independent

of the roughness geometry, and a geometry factor e_,h_, that is simply the amplitude of the Fourier

harmonic from the roughness distribution which is resonant with the generated vortex mode. This type

of decoupling substantially simplifies the parametric study of such receptivity mechanisms. However,

the number of parameters on which the efficiency functions Aa and A_, depend is still quite large,

particularly in view of the three dimensionality of the flow involved. In particular, for the FSC family

of boundary layers, both As and Au depend on the pressure gradient parameter _H, the local Reynolds

number R, and the sweep angle 0s_. In addition, the function Au also depends on the frequency w and

the local orientation Sac of the free-stream acoustic disturbance. A complete parametric study across

this multidimensional space would be a rather formidable task. Therefore, in this paper, we will be

content with comparing the numerical values of As and Au in a few typical cases and, in addition,

elucidating the general effect of the different types of roughness geometries. It will be seen that even

within the limited number of cases considered, the efficiency function IA_I can exhibit rather complex

patterns, due to the multitudinous influences thereupon. Of course, only the major features of its

behaviour will be highlighted in the discussion below.

3.1 A Comparison of the Efficiency Functions for Stationary and Nonstationary

Receptivity

3.1.1 Neutral Vortex Modes

To begin, let us assume that the position of the roughness distribution has been held fixed at

R = 400 and examine the magnitudes of A, and A_ for the different crossflow modes that are predicted

to be neutrally stable at thistocation by the quasi-parallel stability theory. Receptivity in the vicinity

of the lower branch location is most important from a practical standpoint; however, the physics of

instability modes in most of the unstable region is, in general, typified by the upper branch mode.

In that sense, examining this latter limit is helpful as well. We will consider three different values of

the pressure gradient parameter: _H = 1.0, 0.6, and -0.1, respectively. The local sweep angle 0a_

will be assumed to be 450 in each of the three cases. As pointed out by Mack [33], this particular

sweep angle corresponds to the maximum crossflow velocity at a given pressure gradient; therefore, one
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mayexpectthe featuresof crossflowinstability andreceptivityto beexhibitedin the mostprominent

fashionnearthis angle. In fact, becauseof the strong,favorablepressuregradientat _H "- 1.0 and

_H = 0.6, the local instability of the associated boundary-layer profiles is purely of the crossflow type.

On the other hand, due to the adverse pressure gradient at _3H = --0.1, the associated boundary-layer

flow is unstable to both streamwise and crossflow instabilities at the location of receptivity. To get an

idea about the locus of neutral modes for a typical FSC boundary layer with a favorable and adverse

pressure gradient, respectively, along the chordwise direction, the reader may refer to Figs. 13.7 and

13.9 of Mack [33]. An entire neutral surface for the three-dimensional boundary layer along a swept

wing has been plotted by Meyer and Kleiser [6].

In Fig. 3a, we have plotted the efficiency-function magnitudes for the neutral modes along the

lower branch at the above three pressure gradients, as functions of the frequency parameter f - w/R.

The corresponding plot for the neutral modes along the upper branch at R = 400 is given in Fig.

3b. In general, for each neutral mode with frequency f and wavenumber vector (ain_,fl_), another

neutral mode exists with frequency -f and wavenumber vector (-ai,_8,-_w). However, the values

of the efficiency function for each pair of modes of this type are complex conjugates of each other.

Thus, only one of these two families need be considered for the purpose of a parametric study; in our

calculations, we have chosen the family of neutral modes that represents an analytic continuation from

the stationary neutral modes with positive spanwise wavenumbers. Thus, each curve in Figs. 3a and

3b indicates the variation in IA_I with f at a fixed value of fill; the corresponding symbol denotes the

magnitude of A8 for the respective stationary mode magnified twenty times so that the stationary data

point can be fitted on the same scale as A_. For computing the ]Aul variation along the frequency axis,

we have assumed the local orientation of the acoustic wave to be fixed at 0ac = 0 °.

Figures 3a and 3b show that, for the stagnation point boundary layer (_H = 1.0), the range of

neutral frequencies at R = 400 extends from nearly -1.9 x 10 -4 along the negative f axis to about

2.6 x 10-4 on the positive side. At _H = 0.6, this range shrinks somewhat on both sides of the f axis,

whereas at ]_H = --0.1, it shrinks substantially, but only along the positive f axis. The maximum

(positive) neutral frequency at _H = --0.1 is only about 0.18 x 10 -4. Moreover, because the local

boundary-layer profile along the chordwise direction is unstable at _H = --0.1, the range of unstable

spanwise wavenumbers in this case also includes the/_ = 0 mode in a significant range of the neutral

frequencies. One may observe that, in general, the [Aul curve has a somewhat different behavior

25



dependingon whetherthefrequencyparameter f is positive or negative. The type of local instability

also appears to have an influence on the shape of this curve. For instance, along the lower branch

of the neutral locus, one finds a ]Aul curve with a pronounced oscillatory behaviour in the case of

flH = --0.1 (where the local instability is a combination of both streamwise and crossflow modes), in

contrast to a nonoscillatory pattern when/3H = 1.0 or 0.6 (in which case the local instability is purely

of the crossflow type). However, perhaps the most striking feature of the [A_] curves along both upper'

and lower branches is their rapid rise as the frequency parameter tends to zero along both sides of the

frequency axis. Of course, the Stokes wave approximation for the acoustic-field signature, which was

used to compute these results, also becomes invalid at sufficiently small values of Ifl. Strictly speaking,

this approximation is only valid when the local Strouhal number S -= f R_ is >> 1. However, the

numerical results of Ackerberg and Phillips [50] for the two-dimensional Blasius case indicate that

the Stokes wave solution is nearly established when S = 2. If we assume the same to be the case

for a FSC boundary layer, then the results in Figs. 3a and 3b can only be expected to be valid for

If[ > 0.25 x 10 -4. Figures 3a and 3b also indicate that the magnitude of the efficiency function, A_,,

along both the lower and the upper branch is an increasing function of the Haxtree parameter /3H.

However, Figs. 4a and 4b below will show that after maximizing the value of IA_[ over all possible

acoustic orientations , the above observations is probably only valid in the range of favorable pressure

gradients.

Figures 3a and 3b also suggest that the efficiency function IAsl along either neutral branch is also

an increasing function of the Hartree parameter/3_/. Considering that the local Hartree parameter

along a swept wing is equal to 1.0 at the attachment line, and decreases thereafter, this would seem to

indicate an increased sensitivity of the boundary-layer flow to roughness elements in the vicinity of the

attachment line. However, one should also keep in mind that the local sweep angle also changes quite

rapidly near this location, and the results of Figs. 3a and 3b do not consider the variation in IA_[ with

0s_. In view of the magnification involved in plotting the stationary data points, the magnitude of Aa is

obviously much smaller than the average magnitude of A_ for Ifl > 0.25 x 10 -4. To consider a specific

case, let us examine the ratio of IAa[ to the value of IA_,I at some typical frequency, say f = -1.0 x 10 -4.

As indicated in Table 1, the value of this ratio is close to 4.3 for the lower branch modes for all three

pressure gradients. The corresponding ratios for a positive frequency f = 1.0 x 10 -4 are somewhat

larger: close to 8.2 for flH = 1.0 and 11.8 for/_H = 0.6. H the geometry factor has comparable values for
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thewavenumbersof both steady and unsteady vortices, then the amplitude of an acoustic disturbance

that is propagating along the chordwise direction would still need to be as high as nearly 10 percent of

the local free-stream speed, as long as the initial amplitude of the neutral nonstationary vortex is to

equal the initial amplitude of the neutral stationary mode. Also note that the values of the efficiency

functions along the upper branch are roughly of the same order of magnitude as the corresponding

values along the lower branch for both stationary and nonstationary vortices.

The efficiency function IA_,[ above indicates the frequency dependence of the roughness-induced

receptivity mechanism, measured in terms of the maximum velocity perturbation along the direction

of the local inviscid streamline. Even if one measures the instability-wave amplitude in terms of the

maximum of the chordwise velocity perturbation, or the velocity pertubation perpendicular to the

wavenumber vector of the instability mode, the shape of the frequency-response curve is found to

remain qualitatively similar in the cases examined above. On the other hand, when the perturbation

in surface pressure, or the maximum of the velocity perturbation in the spanwise direction, was chosen

as the yardstick for measuring the strength of receptivity, the shape of the efficiency function curve

was considerably different. However, because the velocity perturbation along the local streamline is

usually the dominant component of the perturbation associated with crossflow modes, all the results

in this paper will be based on this quantity.

3.2 Influence of Acoustic-Wave Orientation on the Unsteady Receptivity

The values of {A_I plotted in Figs. 3a and 3b were computed for a fixed orientatio.n of the acoustic

disturbance, namely 0_c = 0. However, as discussed in the context of Eq. (2.15), the magnitude of the

efficiency function for a given unsteady mode is maximum when the free-stream velocity fluctuation is

aligned with the direction of the wavenumber vector associated with this vortex mode. In Figs. 4a and

4b, we have plotted these maximum values of IAul along the lower and upper branches of the neutral

locus, respectively. According to Eq. (2.15), these values are related to those plotted in Figs. 3a and

3b via the relation

h,,(Sac=Oin,) _ _ 1 (3.1)
A_(0,c = 0) cos #in,

where 8in8 denotes the orientation of the wavenumber vector (ain,, _w), as defined following Eq. (2.20).

The shape of the [A_[ curves in Figs. 4a and 4b is significantly different from that in Figs. 3a and 3b,

with the Au magnitude for positive frequencies being larger than the Au values for negative f in most
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parts of the neutral range, except for the low-frequency regime. Moreover, it is seen that the two zeros

of the IAul curve along the lower branch at/_H = --0.1 in Fig. 3a are absent from the corresponding

curve in Fig. 4a. This is merely because these modes correspond to a purely spanwise wavenumber

vector, and hence, could not be excited in the previous case, corresponding to an acoustic wave parallel

to the chordwise direction. On other hand, one may note that the (near-zero) minimum in the IA_,I

curves along the upper branch for _H = 0.6, and /_H = 1.0 in Fig. 3b is also present in each of the

corresponding curves of Fig. 4b. It was found that this minimum corresponds to a near cancellation

between the respective contributions to the instability motion from the source term in the differential

equation (2.12a), and the inhomogeneous boundary condition (2.12b).

A comparison of Figs. 4a,4b with Figs. 3a,3b suggests that the minimum level of free-stream

fluctuation, which is necessary to excite an unsteady neutral vortex with the same initial amplitude as

the neutral stationary vortex, can be reduced significantly in the cases examined by suitably modifying

the orientation of the incident acoustic disturbance. SpecificMly, for the lower branch mode at f =

-1.0 x 10 -4, one now needs an acoustic fluctuation of approximately 17 percent at /_H = 1.0 and 0.6,

but only about 1 percent in the /_H = --0.1 case (see Table 2 for a detailed comparison of the IA_I

values with IAsl). However, even these free-stream levels are still quite high when compared to those

encountered in a typical flight environment. Moreover, because the wavenumbers of the two vortices

are not drastically different, the differences in geometry factors will probably not change the above

numbers significantly.

3.3 Nonneutral Vortices

Now let us examine the variation in the magnitude of the efficiency function for the values

of fl_ which are between the two neutral values or in the subcritical range below the lower branch

wavenumber. A partial motivation behind this examination is, of course, to ensure that the receptivity

properties found above for the neutral modes are also characteristic of the overall behavior across the

entire band of wavenumbers. However, the generation of growing modes, particularly the stationary

ones, is deemed particularly important in the present case. The reasoning behind this is as follows.

First, because of the primarily inviscid nature of the crossflow instability, the critical Reynolds number

at which the vortex of a given wavelength becomes unstable (according to the quasi-parallel theory)

is fairly small. Because of this shrinking in the physical length of the region upstream of the lower

branch, the possibility exists that any variations in the surface geometry are concentrated primarily
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in the regiondownstream,wherethesevorticesarealreadyunstable. The relativelysmall valuesof

Reynoldsnumberat the lowerbranchstationalsosuggestthat the quasi-paralleltheorymaybecome

inadequatenearthis location.Thentheonly regionwherethe predictionsbasedon this theorycanbe

consideredto bereasonablyaccuratecorresponds,again,to locationsdownstreamof the lowerbranch

wherethesevorticesareunstable.In particular,whenthethicknessof theboundarylayerhasincreased

sufficientlyto becomparableto the spanwisewavelengthof thevortex,thenthe evolutionof the latter

hasbeenshownto begovernedby the stationaryform of Rayleigh'sequation(Gregory,Stuart and

Walker[51],Hall [52]),whichdemonstratesthe basicvalidity of quasi-parallelresultsin this regime.

Similarly,the nonstationarymodesof successivelylargerfrequenciesaredescribedasymptotically by

the triple-deck (Stewart and Smith [53]), quintuple-deck (Bassom and Gajjar [54]), 5r the unsteady-

Rayleigh framework. Because the quasi-parallel theory is uniformly valid (up to the leading order, at

least) in all these regimes, the basic validity of the results pertaining to nonstationary receptivity is

also believed to be assured in the majority of the frequency domain.

In Figs. 5a through 5c, we have plotted the magnitude of A_ for Sac = 0 at a few selected values

of the frequency parameter f, along with the magnitude of As in the / = 0 case, for each of the three

different pressure gradients under consideration. The wavenumbers corresponding to upper and lower

neutral branches have been highlighted by open and filled circles, respectively. The behavior of IAul

across the unstable range of wavenumbers is rather different, depending on whether these modes are

of pure crossflow type (_H = 1.0,0.6), or represent a combination of the crossflow and streamwise

instability, as in the f_S -: --0.1 case. The variation in IAul is nearly monotonic in the former case,

although it can either increase or decrease with flw, depending, apparently, on whether or not f is

positive. In contrast, the IA_,] curves at _H = -0.1 exhibit a rather complicated pattern across the two

neutral wavenumbers, which involves local minima and maxima. The latter pattern is also observed at

_H = 1.0 and at _g = 0.6, but only in the subcritical range of spanwise wavenumbers.

The major noteworthy features of the IAsl curves in Figs. 5a through 5c are: (i) the rapid rise in

IAsI up to nearly the lower branch wavenumber, and (ii) a relatively slow variation across the unstable

range of wavenumbers that follows this rise. The shape of the IhsI curve at other Reynolds numbers is

also roughly similar, with the overall magnitude of the efficiency function decreasing with an increase in

the Reynolds number (Fig. 5d). Note that in Fig. 5d (and also in Fig. 5e below), we have assumed the

Hartree parameter to be constant while varying the Reynolds number; therefore, the local sweep angle

29



Oa_ is also varied suitably with R. For the reader's convenience, the abscissa in Fig. 5d corresponds

to the spanwise wavenumber fl_ nondimensionalized by a uniform length scale that corresponds to

R = 400. Note that the overall shape of the [As[ curve for the FSC profiles is quite similar to that of

the analogous efficiency function in the rotating disk case (see Choudhari and Streett [23]). However,

unlike the FSC case above, the efficiency function in the rotating-disk case showed little variation with

respect to the local Reynolds number at sufficiently large values of the azimuthal wavenumber.

Figure 5e illustrates the variation with respect to R in the IAul curve for a crossflow mode of fixed

physical frequency, which,corresponds to f = 1.0 x 10 -4 at R = 400. Again, the overall features

appear to be relatively unchanged within the Reynolds-number range considered. Thus, overall, the

parametric study for the nonneutral vortices also suggests that the previous conclusion concerning the

initial amplitudes of stationary and nonstationary vortices will remain unaffected.

8.4 Influence of Roughness Geometry

3.4.1 A Single, Isolated Roughness Element

After studying the behavior of the efficiency functions in a few specific cases, we now consider

the influence of the roughness geometry upon the initial amplitude of the generated crossflow-vortex

mode. In practice, roughness distributions over laminar-flow wings can assume a wide variety of forms.

However, one specific geometry that is relevant to laminar flow control applications and is easily

realizable in a laboratory experiment corresponds to roughness distributions created through different

arrangements of circular dots with a fixed height. Radeztsky et al [5] recently carried out an experiment

in which they examined the generation of stationary crossflow modes, caused by individual circular dots

of varying heights and diameters. The instability motion observed in an experiment typically consists

of a rather narrow spectrum of wavenumbers. Therefore, in order to compare the relative effectiveness

of different roughness geometries, it is sufficient to compare the respective amplitudes of a single Fourier

harmonic corresponding to the dominant crossflow mode.

Let us first consider the receptivity due to an individual, isolated circular dot of nondimensional

radius R. This corresponds to a normalized height distribution of

h*(X, Z)/h_ = 1 X 2 + Z 2 < R 2

and

h_( X, Z) / h_) = 0 otherwise, (32a)
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whereh i denotes the maximum height over the cross section of the roughness distribution. The two-

dimensional Fourier transform of this geometry is independent of the wavenumber orientation and is

given in terms of the wavenumber magnitude k by

_(_, _) = R2 Jl(kR)
kR ' (3.2b)

where J1 denotes the Bessel function of the first kind with order one. To assess the relative effectiveness

of circular dots with different diameters in exciting a given vortex mode of an arbitrary wavenumber

k, we have plotted the magnitude of the normalized quantity

k2hw(a, _) = kRJ1 (kR) (3.3)

in Fig. 6 as a function of the dot radius normalized by the vortex wavelength Ains = 2r/k. the

normalized geometry factor displays a pattern of alternate maxima and minima. The sequence of

these minimum values corresponds to the countably infinite zeros of the Bessel function Jl(27rR/,_ina).

The values of the local maxima increase monotonically with R/_ins, with an asymptotic behavior

proportional to (R/)qns) 3/2 as R/_ins ---, cx_. The first maximum is approximately equal to 1.25

and occurs at a radius that.corresponds to R/,_m, ,_ 0.382?. As the radius of the dot is decreased

below this value, the magnitude of the geometry factor decreases and approaches zero at a quadratic

rate in the R/2ins ---, 0 limit. The quadratic approach to zero for the two-dimensional transform

is considerably faster than the corresponding behavior of the one-dimensional Fourier transform of a

rectangular roughness strip in the limit of its width going to zero.

One of the significant outcomes of the work by Radeztsky et al [5] was the experimental demon-

stration of the influence that the receptivity stage can have on the transition Reynolds number in a

swept-wing boundary layer. In particular, these investigators measured the variation in the transition-

wedge location downstream of a circular roughness dot as a function of the dot diameter normalized

by the wavelength of the dominant cross flow mode. Their findings showed that as the dot diameter

was decreased below its initiM value, the transition location shifted continually downstream, but at a

decreasing rate, so that for roughness dots below a critical size (R/_ins _, 0.04), no further movement

in the transition location occurred. Although relating the transition location directly to the initial

amplitude of the dominant stationary vortex is difficult, the assumption can be made that a downward

shift in the transition location corresponds to a smaller initial amplitude of the vortex. The largest size

dot used in the experiments of Radeztsky et al had a diameter of about 0.46 times the wavelength of

31



the vortex, or a radius that corresponds to R/Ains = 0.23. Because this value is well below the location

of the first maximum in Fig. 6, the observations of Radeztsky et al are consistent with the theoretical

predictions above.

Similarly, the rapid drop in the magnitude of the geometry factor as R/Ain, _ 0 can explain the

observed saturation in the transition location as the dot diameter is reduced below approximately 8

percent of )qns. As seen from Fig. 6, at R/Ains = 0.04, the magnitude of the geometry factor is already

about 40 times smaller than its maximum value at R/Ains "_ 0.38274, or about 25 times smaller than

its value at R/Ain, = 0.23, the latter being the maximum dot size used in the above experiments. In

short, there is a nonzero roughness-induced receptivity even as the dot size is reduced below the critical

value found in the experiments; however, this receptivity is rather weak, and most likely, negligible

when compared to the receptivity via other possible mechanisms, such as those mentioned in the

introduction. This, we believe, is the reason behind the saturation in the transition location as the dot

size is decreased. Radeztsky et al, however, seem to suggest that a smaller roughness simply does not

excite the dominant vortex mode, because it cannot introduce any streamwise vorticity at the length

scale of the latter.

3.4.2 A Periodic Array of Compact Roughness Elements

A single circular dot excites a continuous spectrum of crossflow vortices in the boundary layer,

but a periodic array of such dots will only excite a discrete spectrum that corresponds to the different

harmonics of the fundamental wavenumber. Given the efficiency function data in Figs. 3 through

5, the typical initial amplitudes of both stationary and nonstationary vortices excited by a spanwise-

periodic array of these circular dots will be of interest. The fundamental wavenumber of the array

can be assumed to be equal to the spanwise wavenumber of the vortex mode under consideration. For

simplicity, we will also assume that the radius of each dot corresponds to the first maximum in Fig. 6

(i.e., R/Ai,_s ,_ 0.383). The magnitude of the geometry factor in this case is given by

Ih l-- 0.498 - . (3.4)

If we now assume that the nondimensional height ¢_ of the dots is equal to 0.1 (i.e., Rho = _)*h_/v* = 40

in this case), then the initial amplitude of the stationary vortex (measured in terms of the maximum

velocity perturbation along the direction of the local inviscid streamline) is about 0.57 percent of the

free-stream speed for the lower branch mode at R = 400 and /_H = 0.6. If we further assume the
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acoustic-amplitudeparametereac to be approximately 0.1 percent, then the maximum amplitude of

the lower-branch mode at f = 1.0 x 10-4 is nearly 0.02 percent.

Next, we study the variation in the initial amplitude of a neutral instability mode when the orien-

tation of the roughness array is changed from the spanwise direction (with a simultaneous change in

the spacing between the adjacent elements to excite the same instability mode in all cases). As shown

by Eq. (2.16), the ratio of the instability-wave amplitude in this case to the amplitude caused by a

spanwise-periodic array is given by the product of the corresponding ratios of the respective geometry

factors and the efficiency functions, respectively. The magnitudes of the latter two ratios, as well of the

product thereof, are plotted in Figs. 7a through 7c as functions of the array orientation 67, for a few

selected modes along the lower neutral branch at R = 400 and flH = 0.6. The ratio of the geometry

factors essentially exhibits a cosine variation in 0r, with a zero value for roughness arrays aligned with

the axis of the vortex mode. Because the latter direction is usually close to that of the local inviscid

streamline, one would expect the roughness arrays that are closely aligned with the local free stream

to generally produce weaker receptivity. However, the array orientation that corresponds to the max-

imum of the efficiency-function ratio, which coincides with the direction of the group-velocity vector,

also happens to be reasonably close to the direction of the local inviscid streamline. As a result, one

observes a rather rapid variation in the instability-wave amplitude when the array direction is varied

across 0r = 0_w - r/2 (Fig. 7c).

3.4.3 Nonlocalized Roughness Distributions

We now examine the distributed generation of stationary and nonstationary vortices caused by

two-dimensional lattices of circular dots. For simplicity, we will assume the lattice geometry to be

rectangular and aligned with the coordinate axes X and Z. Moreover, in view of the strong tuning

required for distributed receptivity, we will also assume that the fundamental wavenumber of this

distribution along the chordwise direction is nearly equal to the lower branch wavenumber a_,_s for a

crossflow mode at the specified physical frequency w* and the spanwise wavenumber _3_ (equal to the

fundamental wavenumber of the lattice in the Z direction). As seen from Eqs. (2.18) through (2.20),

the main factor that determines the effective initial amplitude of the instability wave in the distributed-

geometry case is the desynchronization factor Do. We have plotted the real and imaginary parts of

this factor in Fig. 8 for the crossflow modes along the lower branch at R = 400 and flH = 0.6. These
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values are significantly higher than the corresponding values in the Blasius case [46]. Substituting the

value of Da for the stationary mode into Eq. (2.18d) then suggests that a two-dimensional lattice of

compact roughness elements can produce a stationary crossflow vortex that is nearly 3.2 times stronger

than the vortex produced by a one-dimensional array of the same roughness elements at R = 400.

Figure 8 also indicates that, unlike in the Blasius case, the real part of Da is much larger than

its imaginary part for at least the particular case examined in the figure. Because the root-mean-'

square amplitude of the instability modes induced by a statistically stationary roughness distribution

is determined solely by the imaginary part of D_, the above finding points towards a strengthened

receptivity in that case. Of course, the nonparallel effects could substantially alter the growth rates of

the instability mode and, thereby, Im(D_) as well, particularly for the lower Reynolds numbers like

R = 400. An investigation related to the effects of curvature and nonparallelism on the stability of

three-dimensional boundary layers was recently given by MMik and Balakumar [55].

4 Summary and Concluding Remarks

A nonasymptotic theory, which is based on the earlier asymptotic work by Goldstein [17] and Ruban

[18] and similar nonasymptotic work by Zavol'skii et al [19], was applied toward the prediction and

comparison of the roughness-induced generation of stationary and nonstationary modes of instability

in three-dimensional, incompressible boundary layers. A general description of this theory was initially

given in Ref. [23], where the theory was utilized in a comparison of the roughness-induced generation of

stationary vortices in a rotating-disk boundary layer, with the receptivity of the same flow in a localized

region of suction through the disk surface. The nonstationary receptivity via these mechanisms was

conjectured to be significantly weaker, since it requires an interaction between the stationary surface

disturbance with an unsteady disturbance in the local free stream, and the latter usually has a very small

magnitude. The limited parametric study presented in the current paper, which covers the generation

of both stationary and nonstationary modes in the FSC family of boundary layers, supports the above

conjecture. Although the efficiency function for nonstationary receptivity was found to be much larger

(in terms of its average magnitude) that the corresponding function for the stationary receptivity, their

ratio is not so large as to compensate for the small unsteady-forcing amplitude. For instance, in the

cases we examined at flH = 0.6 and R = 400, the initial amplitudes of the stationary vortices were

estimated to be nearly 20 to 200 times larger than those of the nonstationary vortices, if the local
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acousticperturbationis assumedto be approximately0.1percentof the local free-streamspeed.Of

course,the smallerinitial amplitudesof the nonstationaryvorticescanbe morethan compensated

for by the their larger(linear)amplificationratios. However,it is alsopossiblethat becauseof their

initial lead,and/or their particularlystronginfluenceon the secondary-instabilitystage(seethe work

of Kohamaet al [4]), the stationary vortices will lead to transition in a swept-wing boundary layer.

Upon completion of this study, we have learned of the recent work by Crouch [56], who has examined

the roughness-induced receptivity in a specific case of the FSC family of boundary layers. The basic

approach utilized therein is the same as that described previously by Choudhari and Streett in Ref.

[23], in the context of a generalization of the Goldstein-Ruban theory for the prediction of crossflow-

mode generation in the general class of three-dimensional boundary layers. The results presented in

Ref. [56] provide additional support to the abovementioned conjecture in Ref. [23].

The boundary-layer flow over two-dimensional surface obstacles of varying length scales was studied

using asymptotic methods by Smith, Brighton, Jackson, and Hunt [57]. On the basis of their work,

the following physical explanation can be offerred for the roughness-induced generation of stationary

crossttow vortices that have wavelengths comparable to the boundary-layer thickness. As shown in

Ref. [57l, the strongest disturbance due to a surface obstacle of this type is localized to a thin layer

immediately adjacent to the surface. Due to the strong viscous action within this layer, the spatially

nonuniform displacement of the flow (by the rough surface) is converted into a relatively weaker (specif-

ically, of relative 0(R-1/3)), but commensurately nonuniform, outflux from the outer edge of this thin

layer. This outflux, then, drives the disturbance motion inside the main part of the boundary layer

which controls the predominantly inviscid crossflow instabilities. Basically, the variation in the sub-

layer outflux along the crossflow direction acts as a direct source of streamwise vorticity into the main

region, thereby exciting the stationary crossflow mode as part of the total mean-flow perturbation. The

asymptotic scalings presented in Smith et al would suggest that the initial amplitude of this vortex

mode is O(R-1/3e_), i.e., ]Asl = 0(R-1/3). However, one may recall at this point that the strength

of stationary receptivity is related to the component of the base-flow shear (U_(0), Wg(0)) along the

direction of the wavenumber vector corresponding to the stationary crossflow mode (see Eq. (2.7c)).

The direction of the base-flow shear is usually within a few degrees of the direction of the local inviscid

streamline. On the other hand, the wavenumber vectors of crossflow vortices in swept-wing boundary

layers are nearly orthogonal to the potential streamline. This would imply that the magnitude of As
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is likely to be smaller (numerically) than just R -1/3.

We also examined the effects of different types of roughness geometries on a theoretical basis, and

also with the aid of a numerically based parametric study. In particular, we examined the influence

of the size of a roughness element, the orientation of a periodic roughness array, and the distributed

generation of instability modes due to two-dimensional lattices and/or stationary random irregularities.

As discussed previously in Refl [46], the assumption of random irregularities significantly reduces the

amount of input required for the estimation of receptivity, since the only necessary _pecifications in

this case are: the mean-square height of the surface roughness, and the type and the integral scale

of the autocorrelation function that characterizes the roughness-height distribution. Although, for

aerodynamically rough surfaces, even this data does not seem to have been available in the past, the

recent work of Radeztsky et al. [5] indicates that the possibility of having such data at the disposal of

the designer may be realized in not too distant a future. In our current work, we have also indicated

how the randomness of the unsteady disturbances could be accomodated into the Goldstein-Ruban type

theory. However, the ability to make predictions of this type is, again, contingent on the availability

of similar statistics for the disturbance environment in the free stream.

Because the results herein are based on a nonasymptotic framework, a numerical and/or an ex-

perimental verification of them will be highly desirable, particularly for the stationary modes in the

vicinity of the lower branch, where the influence of nonparallelism may need to be accounted for. Since

the instability amplitudes in the distributed-roughness case are particularly sensitive to the stability

properties in this region, nonparallelism would have its largest effect on predictions related to this class

of problems, particularly when the roughness distribution is random. The influence of nonparallelism

on stationary and nonstationary crossflow disturbances has recently been considered by Malik and Bal-

akumar [55]. They find the overall effect of nonparallelism to be destabilizing, but of a higher order.

But, it is not clear whether the same conclusion can also be applied to the lower branch modes. Nu-

merical simulations would, therefore, be helpful in a definite characterization of the nonparallel effects

in this region.

Our calculations also point toward an increased efficiency of the roughness-induced receptivity to

acoustic disturbances of very small frequencies. However, since the Stokes wave approximation utilized

in this paper becomes invalid at these smaller frequencies, a separate investigation devoted specifically

to this regime is suggested for the future. Again, experiments or simulations that pertain to realistic
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geometriesare needed to clarify this issue further. Finally, the influence of roughness elements with

moderately large heights, which produce a nonlinear disturbance to the mean boundary layer, must be

examined in the case of both stationary and nonstationary receptivity. So far, this problem has only

been considered for the receptivity of a two-dimensional boundary layer, by Bodonyi, Duck, Welch,

and Tadjfar [58].
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Table 1

The ratio [A_XIA,for neutral modes at R = 400 when 0_c = 0 (fo -- f x 106)

OH fo along lower branch

-200 -100 100 200

1.0 4.2 8.2 7.8

0.6 4.4 11.8

-0.t 16.0 4.2

f0 along upper branch

-200 -100 100 200

7.8 25.0 15.5

1.05 26.9

4.2 7.8

Table 2

b_[ for neutral modes at R = 400 when 0_c = Oi,_, (fo =-The ratio A,

f x 10 6)

/3n fo along lower branch

-200 -100 100 200

1.0 5.7 24.1 33.7

0.6 5.9 40.7

-0.1 34.8 100.4

fo along upper branch

-200 -100 100 200

11.4 43.0 31.5

1.5 46.2

4.3 11.1
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Fig. 1. Schematic of problem geometry.
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Fig. 6. In_uence of dot diameter on magnitude of geometry factor.
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